Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Death Discov ; 9(1): 9, 2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2185786

ABSTRACT

Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors. Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2 infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of Tregs and macrophages will provide the potential targets for treating ALI.

2.
Innovation (Camb) ; 4(1): 100359, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2184481

ABSTRACT

The BBIBP-CorV severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccine has been authorized for emergency use and widely distributed. We used single-cell transcriptome sequencing to characterize the dynamics of immune responses to the BBIBP-CorV inactivated vaccine. In addition to the expected induction of humoral immunity, we found that the inactivated vaccine induced multiple, comprehensive immune responses, including significantly increased proportions of CD16+ monocytes and activation of monocyte antigen presentation pathways; T cell activation pathway upregulation in CD8+ T cells, along with increased activation of CD4+ T cells; significant enhancement of cell-cell communications between innate and adaptive immunity; and the induction of regulatory CD4+ T cells and co-inhibitory interactions to maintain immune homeostasis after vaccination. Additionally, comparative analysis revealed higher neutralizing antibody levels, distinct expansion of naive T cells, a shared increased proportion of regulatory CD4+ T cells, and upregulated expression of functional genes in booster dose recipients with a longer interval after the second vaccination. Our research will support a comprehensive understanding of the systemic immune responses elicited by the BBIBP-CorV inactivated vaccine, which will facilitate the formulation of better vaccination strategies and the design of new vaccines.

3.
Cell Biosci ; 12(1): 65, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1933151

ABSTRACT

Because of the emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different regions of the world, the battle with infectious coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been seesawing. Therefore, the identification of antiviral drugs is of particular importance. In order to rapidly identify inhibitors for SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), an enzyme essential for viral replication, we combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) and developed a novel sandwich-like FP screening assay. Through high-throughput screening, two hits of 3CLpro inhibitors, ginkgolic acid (GA) and anacardic acid (AA) were identified, which showed IC50 values of 11.29 ± 0.48 and 12.19 ± 0.50 µM, respectively. Their binding modes were evaluated by HPLC-Q-TOF-MS. There was no mass increase detected for SARS-CoV-2 3CLpro incubated with either GA or AA, indicating the absence of covalent adducts. The kinetic analysis clearly demonstrated that both GA and AA inhibit SARS-CoV-2 3CLpro via reversible and mixed-inhibition manner. Our results argue against conclusion that GA and AA act as irreversible and covalent inhibitors against SARS-CoV-2 3CLpro, which is based on the studies by Chen et al.

4.
Microorganisms ; 8(4)2020 Apr 17.
Article in English | MEDLINE | ID: covidwho-72282

ABSTRACT

Hong Kong's wet markets play a crucial role in the country's supply of safe, fresh meat to satisfy the dietary needs of its population. Whilst food safety regulations have been introduced over the past few years to maintain the microbial safety of foods sold from these wet markets, it remains unclear whether the hygiene maintenance that is performed on the wooden cutting boards used for meat-processing is effective. In fact, hygiene maintenance may often be overlooked, and hygiene standards may be insufficient. If so, this may lead to the spread of harmful pathogens through cross-contamination, thereby causing severe risks to public health. The aim of this study was to determine the level of microbial transfer between wooden cutting boards and swine meat of various qualities, using 16S metagenomic sequencing, strain identification and biofilm screening of isolated strains. The results established that: (a) the traditional hygiene practices used for cleaning wooden cutting boards in Hong Kong's wet markets expose the surfaces to potentially harmful microorganisms; (b) the processing of microbially contaminated meat on cutting boards cleaned using traditional practices leads to cross-contamination; and (c) several potentially pathogenic microorganisms found on the cutting boards have good biofilm-forming abilities. These results reinforce the need to review the traditional methods used to clean wooden cutting boards after the processing of raw meat in Hong Kong' wet markets so as to prevent cross-contamination events. The establishment of proper hygiene protocols may reduce the spread of disease-causing microorganisms (including antibiotic-resistant microorganisms) in food-processing environments.

SELECTION OF CITATIONS
SEARCH DETAIL